Journal of Physiology

Syndicate content
RSS feed -- current issue.
Updated: 6 hours 9 min ago

How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters

01 March 2014

Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

Transcriptional and functional regulation of the intestinal peptide transporter PEPT1

01 March 2014

Dietary proteins are cleaved within the intestinal lumen to oligopeptides which are further processed to small peptides (di- and tripeptides) and free amino acids. Although the transport of amino acids is mediated by several specific amino acid transporters, the proton-coupled uptake of the more than 8000 different di- and tripeptides is performed by the high-capacity/low-affinity peptide transporter isoform PEPT1 (SLC15A1). Its wide substrate tolerance also allows the transport of a repertoire of structurally closely related compounds and drugs, which explains their high oral bioavailability and brings PEPT1 into focus for medical and pharmaceutical approaches. Although the first evidence for the interplay of nutrient supply and PEPT1 expression and function was described over 20 years ago, many aspects of the molecular processes controlling its transcription and translation and modifying its transporter properties are still awaiting discovery. The present review summarizes the recent knowledge on the factors modulating PEPT1 expression and function in Caenorhabditis elegans, Danio rerio, Mus musculus and Homo sapiens, with focus on dietary ingredients, transcription factors and functional modulators, such as the sodium–proton exchanger NHE3 and selected scaffold proteins.

Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study

01 March 2014

Human genes for passive, ion-coupled transporters and exchangers are included in the so-called solute carrier (SLC) gene series, to date consisting of 52 families and 398 genes. Teleost fish genes for SLC proteins have also been described in the last two decades, and catalogued in preliminary SLC-like form in 50 families and at least 338 genes after systematic GenBank database mining (December 2010–March 2011). When the kinetic properties of the expressed proteins are studied in detail, teleost fish SLC transporters always reveal extraordinary ‘molecular diversity’ with respect to the mammalian counterparts, which reflects peculiar adaptation of the protein to the physiology of the species and/or to the environment where the species lives. In the case of the H+–oligopeptide transporter PEPT1(SLC15A1), comparative analysis of diverse teleost fish orthologs has shown that the protein may exhibit very eccentric properties in terms of pH dependence (e.g. the adaptation of zebrafish PEPT1 to alkaline pH), temperature dependence (e.g. the adaptation of icefish PEPT1 to sub-zero temperatures) and/or substrate specificity (e.g. the species-specificity of PEPT1 for the uptake of l-lysine-containing peptides). The revelation of such peculiarities is providing new contributions to the discussion on PEPT1 in both basic (e.g. molecular structure–function analyses) and applied research (e.g. optimizing diets to enhance growth of commercially valuable fish).

Phosphatase activity of the voltage-sensing phosphatase, VSP, shows graded dependence on the extent of activation of the voltage sensor

01 March 2014

The voltage-sensing phosphatase (VSP) consists of a voltage sensor and a cytoplasmic phosphatase region, and the movement of the voltage sensor is coupled to the phosphatase activity. However, its coupling mechanisms still remain unclear. One possible scenario is that the phosphatase is activated only when the voltage sensor is in a fully activated state. Alternatively, the enzymatic activity of single VSP proteins could be graded in distinct activated states of the voltage sensor, and partial activation of the voltage sensor could lead to partial activation of the phosphatase. To distinguish between these two possibilities, we studied a voltage sensor mutant of zebrafish VSP, where the voltage sensor moves in two steps as evidenced by analyses of charge movements of the voltage sensor and voltage clamp fluorometry. Measurements of the phosphatase activity toward phosphatidylinositol 4,5-bisphosphate revealed that both steps of voltage sensor activation are coupled to the tuning of phosphatase activities, consistent with the idea that the phosphatase activity is graded by the magnitude of the movement of the voltage sensor.

The small GTPase Rac1 is required for smooth muscle contraction

01 March 2014

The role of the small GTP-binding protein Rac1 in smooth muscle contraction was examined using small molecule inhibitors (EHT1864, NSC23766) and a novel smooth muscle-specific, conditional, Rac1 knockout mouse strain. EHT1864, which affects nucleotide binding and inhibits Rac1 activity, concentration-dependently inhibited the contractile responses induced by several different modes of activation (high-K+, phenylephrine, carbachol and protein kinase C activation by phorbol-12,13-dibutyrate) in several different visceral (urinary bladder, ileum) and vascular (mesenteric artery, saphenous artery, aorta) smooth muscle tissues. This contractile inhibition was associated with inhibition of the Ca2+ transient. Knockout of Rac1 (with a 50% loss of Rac1 protein) lowered active stress in the urinary bladder and the saphenous artery consistent with a role of Rac1 in facilitating smooth muscle contraction. NSC23766, which blocks interaction between Rac1 and some guanine nucleotide exchange factors, specifically inhibited the α1 receptor responses (phenylephrine) in vascular tissues and potentiated prostaglandin F2α and thromboxane (U46619) receptor responses. The latter potentiating effect occurred at lowered intracellular [Ca2+]. These results show that Rac1 activity is required for active contraction in smooth muscle, probably via enabling an adequate Ca2+ transient. At the same time, specific agonists recruit Rac1 signalling via upstream modulators, resulting in either a potentiation of contraction via Ca2+ mobilization (α1 receptor stimulation) or an attenuated contraction via inhibition of Ca2+ sensitization (prostaglandin and thromboxane receptors).

Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function

01 March 2014

Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.

Ouabain-digoxin antagonism in rat arteries and neurones

01 March 2014

‘Classic’ cardiotonic steroids (CTSs) such as digoxin and ouabain selectively inhibit Na+,K+-ATPase (the Na+ pump) and, via Na+/Ca2+ exchange (NCX), exert cardiotonic and vasotonic effects. CTS action is more complex than previously thought: prolonged subcutaneous administration of ouabain, but not digoxin, induces hypertension, and digoxin antagonizes ouabain's hypertensinogenic effect. We studied the acute interactions between CTSs in two indirect assays of Na+ pump function: myogenic tone (MT) in isolated, pressurized rat mesenteric small arteries, and Ca2+ signalling in primary cultured rat hippocampal neurones. The ‘classic’ CTSs (0.3–10 nm) behaved as ‘agonists’: all increased MT70 (MT at 70 mmHg) and augmented glutamate-evoked Ca2+ (Fura-2) signals. We then tested one CTS in the presence of another. Most CTSs could be divided into ouabain-like (ouabagenin, dihydroouabain (DHO), strophanthidin) or digoxin-like CTS (digoxigenin, digitoxin, bufalin). Within each group, the CTSs were synergistic, but ouabain-like and digoxin-like CTSs antagonized one another in both assays: For example, the ouabain-evoked (3 nm) increases in MT70 and neuronal Ca2+ signals were both greatly attenuated by the addition of 10 nm digoxin or 10 nm bufalin, and vice versa. Rostafuroxin (PST2238), a digoxigenin derivative that displaces 3H-ouabain from Na+,K+-ATPase, and attenuates some forms of hypertension, antagonized the effects of ouabain, but not digoxin. SEA0400, a Na+/Ca2+ exchanger (NCX) blocker, antagonized the effects of both ouabain and digoxin. CTSs bind to the α subunit of pump αβ protomers. Analysis of potential models suggests that, in vivo, Na+ pumps function as tetraprotomers ((αβ)4) in which the binding of a single CTS to one protomer blocks all pumping activity. The paradoxical ability of digoxin-like CTSs to reactivate the ouabain-inhibited complex can be explained by de-oligomerization of the tetrameric state. The interactions between these common CTSs may be of considerable therapeutic relevance.

Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes

01 March 2014

The ATP-sensitive potassium (KATP) channels are crucial for stress adaptation in the heart. It has previously been suggested that the function of KATP channels is modulated by nitric oxide (NO), a gaseous messenger known to be cytoprotective; however, the underlying mechanism remains poorly understood. Here we sought to delineate the intracellular signalling mechanism responsible for NO modulation of sarcolemmal KATP (sarcKATP) channels in ventricular cardiomyocytes. Cell-attached patch recordings were performed in transfected human embryonic kidney (HEK) 293 cells and ventricular cardiomyocytes freshly isolated from adult rabbits or genetically modified mice, in combination with pharmacological and biochemical approaches. Bath application of the NO donor NOC-18 increased the single-channel activity of Kir6.2/SUR2A (i.e. the principal ventricular-type KATP) channels in HEK293 cells, whereas the increase was abated by KT5823 [a selective cGMP-dependent protein kinase (PKG) inhibitor], mercaptopropionyl glycine [MPG; a reactive oxygen species (ROS) scavenger], catalase (an H2O2-degrading enzyme), myristoylated autocamtide-2 related inhibitory peptide (mAIP) selective for Ca2+/calmodulin-dependent protein kinase II (CaMKII) and U0126 [an extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor], respectively. The NO donors NOC-18 and N-(2-deoxy-α,β-d-glucopyranose-2-)-N2-acetyl-S-nitroso-d,l-penicillaminamide (glycol-SNAP-2) were also capable of stimulating native sarcKATP channels preactivated by the channel opener pinacidil in rabbit ventricular myocytes, through reducing the occurrence and the dwelling time of the long closed states whilst increasing the frequency of channel opening; in contrast, all these changes were reversed in the presence of inhibitors selective for soluble guanylyl cyclase (sGC), PKG, calmodulin, CaMKII or ERK1/2. Mimicking the action of NO donors, exogenous H2O2 potentiated pinacidil-preactivated sarcKATP channel activity in intact cardiomyocytes, but the H2O2-induced KATP channel stimulation was obliterated when ERK1/2 or CaMKII activity was suppressed, implying that H2O2 is positioned upstream of ERK1/2 and CaMKII for KATP channel modulation. Furthermore, genetic ablation (i.e. knockout) of CaMKII, the predominant cardiac CaMKII isoform, diminished ventricular sarcKATP channel stimulation elicited by activation of PKG, unveiling CaMKII as a crucial player. Additionally, evidence from kinase activity and Western blot analyses revealed that activation of NO–PKG signalling augmented CaMKII activity in rabbit ventricular myocytes and, importantly, CaMKII activation by PKG occurred in an ERK1/2-dependent manner, placing ERK1/2 upstream of CaMKII. Taken together, these findings suggest that NO modulates ventricular sarcKATP channels via a novel sGC–cGMP–PKG–ROS(H2O2)–ERK1/2–calmodulin–CaMKII ( isoform in particular) signalling cascade, which heightens KATP channel activity by destabilizing the long closed states while facilitating closed-to-open state transitions. This pathway may contribute to regulation of cardiac excitability and cytoprotection against ischaemia–reperfusion injury, in part, by opening myocardial sarcKATP channels.

Facilitation by intracellular carbonic anhydrase of Na+-HCO3- co-transport but not Na+/H+ exchange activity in the mammalian ventricular myocyte

01 March 2014

Carbonic anhydrase enzymes (CAs) catalyse the reversible hydration of CO2 to H+ and HCO3– ions. This catalysis is proposed to be harnessed by acid/base transporters, to facilitate their transmembrane flux activity, either through direct protein–protein binding (a ‘transport metabolon’) or local functional interaction. Flux facilitation has previously been investigated by heterologous co-expression of relevant proteins in host cell lines/oocytes. Here, we examine the influence of intrinsic CA activity on membrane HCO3– or H+ transport via the native acid-extruding proteins, Na+–HCO3– cotransport (NBC) and Na+/H+ exchange (NHE), expressed in enzymically isolated mammalian ventricular myocytes. Effects of intracellular and extracellular (exofacial) CA (CAi and CAe) are distinguished using membrane-permeant and -impermeant pharmacological CA inhibitors, while measuring transporter activity in the intact cell using pH and Na+ fluorophores. We find that NBC, but not NHE flux is enhanced by catalytic CA activity, with facilitation being confined to CAi activity alone. Results are quantitatively consistent with a model where CAi catalyses local H+ ion delivery to the NBC protein, assisting the subsequent (uncatalysed) protonation and removal of imported HCO3– ions. In well-superfused myocytes, exofacial CA activity is superfluous, most likely because extracellular CO2/HCO3– buffer is clamped at equilibrium. The CAi insensitivity of NHE flux suggests that, in the native cell, intrinsic mobile buffer-shuttles supply sufficient intracellular H+ ions to this transporter, while intrinsic buffer access to NBC proteins is restricted. Our results demonstrate a selective CA facilitation of acid/base transporters in the ventricular myocyte, implying a specific role for the intracellular enzyme in HCO3– transport, and hence pHi regulation in the heart.

Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

15 February 2014

There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1.

A catalytic independent function of the deubiquitinating enzyme USP14 regulates hippocampal synaptic short-term plasticity and vesicle number

15 February 2014

The ubiquitin proteasome system is required for the rapid and precise control of protein abundance that is essential for synaptic function. USP14 is a proteasome-bound deubiquitinating enzyme that recycles ubiquitin and regulates synaptic short-term synaptic plasticity. We previously reported that loss of USP14 in axJ mice causes a deficit in paired pulse facilitation (PPF) at hippocampal synapses. Here we report that USP14 regulates synaptic function through a novel, deubiquitination-independent mechanism. Although PPF is usually inversely related to release probability, USP14 deficiency impairs PPF without altering basal release probability. Instead, the loss of USP14 causes a large reduction in the number of synaptic vesicles. Over-expression of a catalytically inactive form of USP14 rescues the PPF deficit and restores synaptic vesicle number, indicating that USP14 regulates presynaptic structure and function independently of its role in deubiquitination. Finally, the PPF deficit caused by loss of USP14 can be rescued by pharmacological inhibition of proteasome activity, suggesting that inappropriate protein degradation underlies the PPF impairment. Overall, we demonstrate a novel, deubiquitination-independent function for USP14 in influencing synaptic architecture and plasticity.

Daily variation in the electrophysiological activity of mouse medial habenula neurones

15 February 2014

Intrinsic daily or circadian rhythms arise through the outputs of the master circadian clock in the brain's suprachiasmatic nuclei (SCN) as well as circadian oscillators in other brain sites and peripheral tissues. SCN neurones contain an intracellular molecular clock that drives these neurones to exhibit pronounced day–night differences in their electrical properties. The epithalamic medial habenula (MHb) expresses clock genes, but little is known about the bioelectric properties of mouse MHb neurones and their potential circadian characteristics. Therefore, in this study we used a brain slice preparation containing the MHb to determine the basic electrical properties of mouse MHb neurones with whole-cell patch clamp electrophysiology, and investigated whether these vary across the day–night cycle. MHb neurones (n = 230) showed heterogeneity in electrophysiological state, ranging from highly depolarised cells (~ –25 to –30 mV) that are silent with no membrane activity or display depolarised low-amplitude membrane oscillations, to neurones that were moderately hyperpolarised (~40 mV) and spontaneously discharging action potentials. These electrical states were largely intrinsically regulated and were influenced by the activation of small-conductance calcium-activated potassium channels. When considered as one population, MHb neurones showed significant circadian variation in their spontaneous firing rate and resting membrane potential. However, in recordings of MHb neurones from mice lacking the core molecular circadian clock, these temporal differences in MHb activity were absent, indicating that circadian clock signals actively regulate the timing of MHb neuronal states. These observations add to the extracellularly recorded rhythms seen in other brain areas and establish that circadian mechanisms can influence the membrane properties of neurones in extra-SCN sites. Collectively, the results of this study indicate that the MHb may function as an intrinsic secondary circadian oscillator in the brain, which can shape daily information flow in key brain processes, such as reward and addiction.

Transition between fast and slow gamma modes in rat hippocampus area CA1 in vitro is modulated by slow CA3 gamma oscillations

15 February 2014

Hippocampal gamma oscillations have been associated with cognitive functions including navigation and memory encoding/retrieval. Gamma oscillations in area CA1 are thought to depend on the oscillatory drive from CA3 (slow gamma) or the entorhinal cortex (fast gamma). Here we show that the local CA1 network can generate its own fast gamma that can be suppressed by slow gamma-paced inputs from CA3. Moderate acetylcholine receptor activation induces fast (45 ± 1 Hz) gamma in rat CA1 minislices and slow (33 ± 1 Hz) gamma in CA3 minislices in vitro. Using pharmacological tools, current-source density analysis and intracellular recordings from pyramidal cells and fast-spiking stratum pyramidale interneurons, we demonstrate that fast gamma in CA1 is of the pyramidal–interneuron network gamma (PING) type, with the firing of principal cells paced by recurrent perisomal IPSCs. The oscillation frequency was only weakly dependent on IPSC amplitude, and decreased to that of CA3 slow gamma by reducing IPSC decay rate or reducing interneuron activation through tonic inhibition of interneurons. Fast gamma in CA1 was replaced by slow CA3-driven gamma in unlesioned slices, which could be mimicked in CA1 minislices by sub-threshold 35 Hz Schaffer collateral stimulation that activated fast-spiking interneurons but hyperpolarised pyramidal cells, suggesting that slow gamma frequency CA3 outputs can suppress the CA1 fast gamma-generating network by feed-forward inhibition and replaces it with a slower gamma oscillation driven by feed-forward inhibition. The transition between the two gamma oscillation modes in CA1 might allow it to alternate between effective communication with the medial entorhinal cortex and CA3, which have different roles in encoding and recall of memory.

Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane

15 February 2014

Synaptic vesicles (SVs) and their proteins must be recycled for sustained synaptic transmission. We tested the hypothesis that SV cholesterol is required for proper sorting of SV proteins during recycling in live presynaptic terminals. We used the reversible block of endocytosis in the Drosophila temperature-sensitive dynamin mutant shibire-ts1 to trap exocytosed SV proteins, and then examined the effect of experimental treatments on the distribution of these proteins within the presynaptic plasma membrane by confocal microscopy. SV proteins synaptotagmin, vglut and csp were clustered following SV trapping in control experiments but dispersed in samples treated with the cholesterol chelator methyl-β-cyclodextrin to extract SV cholesterol. There was accumulation of phosphatidylinositol (4,5)-bisphosphate (PIP2) in presynaptic terminals following SV trapping and this was reduced following SV cholesterol extraction. Reduced PIP2 accumulation was associated with disrupted accumulation of actin in presynaptic terminals. Similar to vesicular cholesterol extraction, disruption of actin by latrunculin A after SV proteins had been trapped on the plasma membrane resulted in the dispersal of SV proteins and prevented recovery of synaptic transmission due to impaired endocytosis following relief of the endocytic block. Our results demonstrate that vesicular cholesterol is required for aggregation of exocytosed SV proteins in the presynaptic plasma membrane and are consistent with a mechanism involving regulation of PIP2 accumulation and local actin polymerization by cholesterol. Thus, alteration of membrane or SV lipids may affect the ability of synapses to undergo sustained synaptic transmission by compromising the recycling of SV proteins.

Synaptic noise is an information bottleneck in the inner retina during dynamic visual stimulation

15 February 2014

In daylight, noise generated by cones determines the fidelity with which visual signals are initially encoded. Subsequent stages of visual processing require synapses from bipolar cells to ganglion cells, but whether these synapses generate a significant amount of noise was unknown. To characterize noise generated by these synapses, we recorded excitatory postsynaptic currents from mammalian retinal ganglion cells and subjected them to a computational noise analysis. The release of transmitter quanta at bipolar cell synapses contributed substantially to the noise variance found in the ganglion cell, causing a significant loss of fidelity from bipolar cell array to postsynaptic ganglion cell. Virtually all the remaining noise variance originated in the presynaptic circuit. Circuit noise had a frequency content similar to noise shared by ganglion cells but a very different frequency content from noise from bipolar cell synapses, indicating that these synapses constitute a source of independent noise not shared by ganglion cells. These findings contribute a picture of daylight retinal circuits where noise from cones and noise generated by synaptic transmission of cone signals significantly limit visual fidelity.

Activity-dependent regulation of NMDA receptors in substantia nigra dopaminergic neurones

15 February 2014

N-Methyl-d-aspartate receptors (NMDARs) are Ca2+-permeable glutamate receptors that play a critical role in synaptic plasticity and promoting cell survival. However, overactive NMDARs can trigger cell death signalling pathways and have been implicated in substantia nigra pars compacta (SNc) pathology in Parkinson's disease. Calcium ion influx through NMDARs recruits Ca2+-dependent proteins that can regulate NMDAR activity. The surface density of NMDARs can also be regulated dynamically in response to receptor activity via Ca2+-independent mechanisms. We have investigated the activity-dependent regulation of NMDARs in SNc dopaminergic neurones. Repeated whole-cell agonist applications resulted in a decline in the amplitude of NMDAR currents (current run-down) that was use dependent and not readily reversible. Run-down was reduced by increasing intracellular Ca2+ buffering or by reducing Ca2+ influx but did not appear to be mediated by the same regulatory proteins that cause Ca2+-dependent run-down in hippocampal neurones. The NMDAR current run-down may be mediated in part by a Ca2+-independent mechanism, because intracellular dialysis with a dynamin-inhibitory peptide reduced run-down, suggesting a role for clathrin-mediated endocytosis in the regulation of the surface density of receptors. Synaptic NMDARs were also subject to current run-down during repeated low-frequency synaptic stimulation in a Ca2+-dependent but dynamin-independent manner. Thus, we report, for the first time, regulation of NMDARs in SNc dopaminergic neurones by changes in intracellular Ca2+ at both synaptic and extrasynaptic sites and provide evidence for activity-dependent changes in receptor trafficking. These mechanisms may contribute to intracellular Ca2+ homeostasis in dopaminergic neurones by limiting Ca2+ influx through the NMDAR.

Complementary functions of SK and Kv7/M potassium channels in excitability control and synaptic integration in rat hippocampal dentate granule cells

15 February 2014

The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP–spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate.

Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing

15 February 2014

The human cortical swallowing system exhibits bilateral but functionally asymmetric representation in health and disease as evidenced by both focal cortical inhibition (pre-conditioning with 1 Hz repetitive transcranial magnetic stimulation; rTMS) and unilateral stroke, where disruption of the stronger (dominant) pharyngeal projection alters swallowing neurophysiology and behaviour. Moreover, excitatory neurostimulation protocols capable of reversing the disruptive effects of focal cortical inhibition have demonstrated therapeutic promise in post-stroke dysphagia when applied contralaterally. In healthy participants (n = 15, 8 males, mean age (±SEM) 35 ± 9 years), optimal parameters of transcranial direct current stimulation (tDCS) (anodal, 1.5 mA, 10 min) were applied contralaterally after 1 Hz rTMS pre-conditioning to the strongest pharyngeal projection. Swallowing neurophysiology was assessed in both hemispheres by intraluminal recordings of pharyngeal motor-evoked responses (PMEPs) to single-pulse TMS as a measure of cortical excitability. Swallowing behaviour was examined using a pressure-based reaction time protocol. Measurements were made before and for up to 60 min post intervention. Subjects were randomised to active or sham tDCS after 1 Hz rTMS on separate days and data were compared using repeated measures ANOVA. Active tDCS increased PMEPs bilaterally (F1,14 = 7.4, P = 0.017) reversing the inhibitory effects of 1 Hz rTMS in the pre-conditioned hemisphere (F1,14 = 10.1, P = 0.007). Active tDCS also enhanced swallowing behaviour, increasing the number of correctly timed challenge swallows compared to sham (F1,14 = 6.3, P = 0.025). Thus, tDCS to the contralateral pharyngeal motor cortex reverses the neurophysiological and behavioural effects of focal cortical inhibition on swallowing in healthy individuals and has therapeutic potential for dysphagia rehabilitation.