ATP reduces functional cell-to-cell tethering between renal tubular epithelial cells

Physiology 2019 (Aberdeen, UK) (2019) Proc Physiol Soc 43, C078

Oral Communications: ATP reduces functional cell-to-cell tethering between renal tubular epithelial cells

P. E. Squires1, E. Siamantouras1, G. W. Price1, J. A. Potter1, C. E. Hills1

1. Life Sciences, University of Lincoln, Lincoln, United Kingdom.

View other abstracts by:


Background: Loss of epithelial (E)-cadherin mediated cell-cell adhesion impairs gap junction formation and facilitates hemichannel-mediated ATP release in the diabetic kidney. Linked to inflammation and fibrosis, we hypothesize that local increases in inter-cellular ATP activate P2X7 receptors on neighbouring epithelial cells of the proximal tubule, to further impair cell-cell adhesion and exacerbate tubular injury. Methods: Atomic force microscopy (AFM)-single cell force spectroscopy (SCFS) was used to quantify the unbinding forces needed to separate clonal tubular epithelial cells of the proximal kidney (HK2) following treatment with non-hydrolysable ATPγS (100μM) ± the P2X7 purinergic receptor antagonist A438079 (50μM) over 48hr. Densitometry was used to semi-quantify Western blot protein expression. Biophysical measurements quantified maximum unbinding force (Fmax), tether (or ligation cluster) rupture events (TREs) and work of detachment (Wd). Three force-displacement curves were acquired per cell. Data from SCFS are expressed as mean ± SEM. Sample numbers refer to separate cell passages (n) from multiple individual cells. Data was evaluated using univariate anova followed by Tukey’s multiple comparisons post-test. P<0.05 was taken to indicate statistical significance. Results: The P2-purinergic receptor agonist ATPγS (100μM), decreased E-cadherin expression by 54.4±4% compared to control (P<0.01, n=3), an effect negated by the P2X7 antagonist A438079 (50mM; 113.6±9.7% of control). The agonist (100mM) weakened intercellular ligation forces (Fmax) by 26.8% (P<0.001; n=3) and affected the formation of ligation clusters by reducing tether rupture events (TREs) by 22.3% (P<0.001; n=3), effects largely reversed by A438079 (50mM). Total energy consumed during the pulling process prior to complete cell separation, was calculated by the integration of the retraction Force-Displacement curve and is referred as the work of adhesion Wd. Our results showed that control cells exhibited a Wd of 21.85fJ±1.1, whilst the total energy consumed in separating ATPγS (50mM) treated cells was reduced to 13.32fJ±1.13, indicating a reduction of 39% (P<0.001; n=3). Co-incubation with A438079 (50mM) increased Wd back to control (23.7fJ±1.22, n=3) and negated the response to ATP. Conclusion: Determining strength of adhesion in disease is challenging due to the underlying molecular assembly that regulates formation of the adherens junction. Force-displacement measurements during cell-cell separation can provide valuable information about the response to ligands and their antagonists. Nanoscale force-displacement measurements capture the molecular activity underlying ATPγS evoked changes in cell adhesion, loss of which appears to be mediated by downstream P2X7 receptor activation and supports a role for P2X7 as a potential therapeutic target in managing progression of diabetic nephropathy.



Where applicable, experiments conform with Society ethical requirements.

Site search

Filter

Content Type